加入收藏 | 设为首页 | 会员中心 | 我要投稿 广州站长网 (https://www.020zz.com.cn/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 站长资讯 > 传媒 > 正文

摩尔定律既已失效,我们该用什么方法衡量半导体进步?

发布时间:2020-07-27 04:37:15 所属栏目:传媒 来源:站长网
导读:副标题#e# 是时候对传统摩尔定律说拜拜了。 当前,最著名的技术准则之一当数摩尔定律。在过去超过55年时间里,这一定律成功概括并预测了晶体管尺寸不断缩小,每两年左右实现一次技术节点升级的趋势。这反过来又成为半导体工程师们的奋进动力,让他们付出一
副标题[/!--empirenews.page--]

是时候对传统摩尔定律说拜拜了。

摩尔定律既已失效,我们该用什么方法衡量半导体进步?

当前,最著名的技术准则之一当数摩尔定律。在过去超过55年时间里,这一“定律”成功概括并预测了晶体管尺寸不断缩小,每两年左右实现一次技术节点升级的趋势。这反过来又成为半导体工程师们的奋进动力,让他们付出一切,只为在规定的时限之内将同一块芯片中所容纳的晶体管数量再增加一倍。

然而,当初Gordon Moore第一次提出这项影响深远的定律时,还不存在节点之类的概念,而且当时一块集成电路上只能容纳约50个晶体管。

但经过数十的艰苦耕耘与数千亿美元的投资,看看我们现在已经走了多远!如果您正好是在自己的手机上阅读本文,那么您手机使用的内部处理器很可能使用的正是所谓7纳米节点工艺。这意味着在一平方毫米的芯片中可以容纳约1亿个晶体管。5纳米节点处理器现已投入生产,行业领导者甚至能够在未来十年之内打造出1纳米节点。

但在此之后,半导体行业该向何处去?

毕竟1纳米几乎只是5个硅原子的宽度。很明显,摩尔定律将很快失效,半导体制造技术将无法通过晶体管尺寸缩小进一步提高处理能力。死路一条,注定是死路一条。

但真是这样吗?不一定,因为用制程节点来描述半导体系统本身就不太准确。事实上,7纳米晶体管中的大部分关键特征都远不止7纳米,而且这种命名与物理现实之间脱节的状况已经存在了二十年之久。这当然不是什么秘密,但却带来了一系列糟糕的后果。

“即使不完美,我们仍然应该努力达成共识,找到一种比当前制程节点更准确的半导体发展描述方式。”—Michael Mayberry,英特尔公司CTO

而且大家对于“制程节点”的持续关注,实际上是忽略了另一个更为重要的事实,即即使不再对CMOS晶体管的几何结构进行下压缩,半导体技术仍然能够继续找到新的发展道路。另一个问题是,以制程节点为中心的半导体发展观已经不能再像过去那样真正推动行业的发展。最后,人们只是在把无数资源投入进去,只求换得一个看起来更漂亮、但却毫无意义的数字。

因此,我们有必要寻找更好的方法,替代现有标准为半导体的后续发展制定更明确的考核标准。但是,在这样一个竞争激烈且各参与厂商向来势同水火的行业中,专家们真能团结起来、共商大是吗?希望可以,因为只有这样,我们才能再一次帮助这个世界上最大、最重要、也最具活动的行业找到明确的前进方向。

那么,我们到底是怎么走到这一步的?换句话说,任何过去一百年中最重要的技术成果之一,微处理器为什么就走上了“拼制程节点”这条邪路?自1971年英特尔4004微处理器亮相以下,MOS晶体管的线性尺寸缩小至约千分之一,单一芯片上的晶体管数量增加到约1500万倍。而长久以来,人们衡量这种集成密度进步的度量标准主要是尺寸,即金属半节距与栅极长度。这样的选择主要是为了偷懒,因为它们在很长一段时间内几乎没有什么变化。

金属半节距是指导芯片之上从一个金属互连点到下一个金属互连点的间距的一半。直到十年之前,二维或者叫“平面”晶体管设计一直占据着主导地位,而其中的栅极长度用于衡量晶体管源极与漏极之间的空间。器件的栅极堆叠位于该空间之内,用于控制源极与漏极之间的电子流动。从历史角度看,栅极长度成为决定晶体管性能的最重要指标,因为栅极长度越短,则代表器件的开关速度越快。

在栅极长度与金属半节距大致相等的时代,二者共同构成了芯片制造技术的基本特征,即节点数。芯片上的这些指标通常每过一代缩小30%,从而成功使晶体管密度加倍——简单的自述,矩形的长和宽尺寸各减小30%,则意味着面积减半。

在上世纪七十年代到八十年代,以栅极长度与半节距衡量节点数的作法一直没有问题。但到九十年代中期,二者开始脱钩。为了继续在速度与设备效率方面取得历史性突破,芯片制造商开始更积极地缩减栅极长度。例如,所谓130纳米节点制程的晶体管实际上使用的是70纳米的栅极,结果就是摩尔定律的密度翻倍之道被保持了下去——只是将栅极长度排除在外。而半导体行业基本上仍然延续着原本的节点命名习惯。

缺乏实际意义的技术节点

上世纪九十年代中期之前,逻辑技术节点就等同于CMOS晶体管的栅极长度。有一段时间,栅极长度的收缩速度要更快一些,但随后又开始保持同步。

摩尔定律既已失效,我们该用什么方法衡量半导体进步?

斯坦福大学纳米电子实验室,IEEE 2020年设备与系统国际发展路线图

GMT方法

光刻技术的局限: 目前最先进的光刻技术当数极紫外光刻技术,光波长为13.5纳米。这意味着芯片特征的收缩空间即将耗尽,芯片制造商也不得不向单片式3D集成求助,通过增加芯片分层的方式保证CMOS密度的继续增加。GMT方法所关注的也正是其中两项最关键特征(栅极节距与金属节距)的大小与层数。

摩尔定律既已失效,我们该用什么方法衡量半导体进步?

斯坦福大学纳米电子实验室,IEEE 2020年设备与系统国际发展路线图

2000年初的技术发展又带来了新的变化,处理器开始关注自身运行功耗。工程师们找到了保持设备继续改进的方法,例如让晶体管的一部分硅置于源极之下,从而使电荷载流子能在较低电压下更快通过,从而在提高CMOS器件速度与能源效率的同时,又无需进一步加压栅极长度。

但为了解决电流泄漏问题,CMOS晶体管的结构必须进行变更,情况也开始进一步跑偏。2011年,英特尔在22纳米节点上切换为FinFET,其栅极长度为26纳米,半间距为40纳米,鳍片则为8纳米。

IEEE终身研究员兼英特尔资深员工、目前负责寻求新一代度量指标的Paolo Gargini表示,“从这个时候开始,节点就已经彻底失去了意义,因为节点数字已经与大家能够在芯片上找到的任何实际尺寸都没有关系。”

虽然还不算是普遍共识,但整个半导体行业已经逐渐开始意识到,确实需要一种新的、更靠谱的解决方案,把简单表述与晶体管中最重要的实际特征重新统一起来。当然,这绝不是要回归使用栅极长度的旧方法,现在的栅极长度已经不再直接决定芯片性能。相反,有人建议使用两种方法来表示制造逻辑晶体管时的具体面积限制。一种被称为接触栅间距,是指从一个晶体管栅极到另一晶体管栅极间的最小距离。另一项则是金属间距,用于衡量两个水平金属互连点之间的最小距离。(由于现在栅极长度已经不再重要,自然也不需要再去把金属间距硬拆分成「半间距」。)

(编辑:广州站长网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

热点阅读