机器学习爱好者必读的入门指南
将每个初始权重设置为1.0:
第2步: 通过函数运行你所知道的每一栋房子,看看这个函数离预测到每一套房子的正确价格有多远: 使用你的函数为每套房子预测价格 例如,如果第一套房子实际上卖了 25 万美元,但你的函数预测它卖了 17.8 万美元,那么这套房子的售价就少了 7.2 万美元。 现在把你的数据集里每套房子的售价差额平方相加,假设你的数据集中有 500 套房子的销售数据,你的函数计算的每套房子售价差额的平方的总和是 86,123,373 美元。这就是当前函数的“错误”程度。 现在,把总和除以 500,得到每套房子的平均差价。将这个平均错误量称为函数的成本(cost)。 如果你能通过调整权值使这个成本为零,你的函数就完美了。这意味着,在每种情况下,你的函数都能够根据输入的数据完美地猜测房屋的价格。这就是我们的目标:通过尝试不同的权重值使成本尽可能低。 第3步: 对每一个可能的权重组合重复第2步。最后选择使成本最接近于零的权重组合。当你找到合适的权重时,问题就解决了! 头脑风暴时间 很简单,对吧?回想一下你刚才都做了什么。你取了一些数据,通过三个通用的、非常简单的步骤输入数据,最后得到一个可以预测你所在地区的任何房子的价格的函数。 但还有一些事实会让你大吃一惊: (编辑:广州站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |