加入收藏 | 设为首页 | 会员中心 | 我要投稿 广州站长网 (https://www.020zz.com.cn/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 运营中心 > 建站资源 > 经验 > 正文

机器学习爱好者必读的入门指南

发布时间:2019-08-10 00:28:03 所属栏目:经验 来源:佚名
导读:副标题#e# 本指南适用于任何对机器学习(Machine Learning,ML)感兴趣但不知道从何开始的人。 我们的目标是让任何人都可以理解,这意味着文中会有很多概述。但谁在乎呢?如果能使一些人对机器学习更感兴趣,我们将倍感欣慰。 什么是机器学习? 机器学习的概

因此,如果我们计算成本函数对每个权重的偏导数,我们就可以从每个权重中减去这个值。这将使我们离山脚更近一步。继续这样做,最终我们会到达山的底部,并为我们的权重找到最好的值。(如果不理解,别担心,继续读下去)。

这是一种为函数寻找最佳权重方法的高级总结,称为批量梯度下降(batch gradient descent)。当你使用机器学习库来解决实际问题时,所有这些计算都会为你完成。但是对正在发生的事情有一个好的了解仍然是有用的。

还跳过了什么内容呢?

我所描述的三步算法叫做多元线性回归(multivariate linear regression)。你正在估算一条贯穿你的所有家庭数据点的直线的方程。然后,根据房子在你的线上的位置,用这个方程来预测你以前从未见过的房子的销售价格。这是一个非常有用的主意,你可以用它来解决“真正的”问题。

虽然我向你展示的方法适用于简单的情况,但它并不适用于所有情况。其中一个原因是,房价并不总是简单到可以遵循一条连续的线。

但幸运的是,有很多方法可以解决这个问题。有许多其他的机器学习算法可以处理非线性数据(如神经网络(neural networks)或带内核的支持向量机(support vector machine, SVM)。也有一些更巧妙地使用线性回归的方法,允许更复杂的线被拟合。在所有情况下,找到最佳权重的基本思想仍然适用。

另外,我忽略了 过拟合(overfitting)的概念。一个简单的例子,有一组权重,它总是能够很好地预测原始数据集中房屋的价格,但实际上从未适用于任何不在原始数据集中的新房屋。但有一些方法可以解决这一问题(如正则化(regularization) 和使用交叉验证数据集(cross-validation)。学会如何处理这个问题是学习如何成功应用机器学习的关键部分。

换句话说,虽然基本概念相当简单,但是应用机器学习并获得有用的结果需要一些技巧和经验。但这是任何开发人员都可以学习的技能!

机器学习有魔法吗?

(编辑:广州站长网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

热点阅读